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Decomposition
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Alternate Representation: Cascade Form
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Alternate Representation: Cascade Form
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Alternate Representation: Parallel Form
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Alternate Representation: Parallel Form Repeated roots
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G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)
This form is obtained from the phase-variable form simply by ordering the 
phase variable in reverse  order

Alternate Representation: controller canonical form
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Alternate Representation: controller canonical form

System matrices that contain the coefficients of
the characteristic polynomial are called
companion matrices to the characteristic
polynomial.

Phase-variable form result in lower companion
matrix

Controller canonical form results in upper
companion matrix
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Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of observers
G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

= (1/s+7/s2 +2/s3 )/(1+9/s+26/s2 +24/s3 )
Cross multiplying
(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]

= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}
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Alternate Representation: observer canonical form
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Note that the observer form has A matrix that is transpose of the controller
canonical form, B vector is the transpose of the controller C vector, and C vector
is the transpose of the controller B vector. The 2 forms are called duals.
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Feedback Control System Example

Problem Represent the feedback control system 
shown in state space. Model the forward transfer 
function in cascade form.

Solution first we model the forward transfer 
function as in (a), Second we add the feedback 
and input paths as shown in (b) complete system. 

Write state equations
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State-space forms for

C(s)/R(s) =(s+ 3)/[(s+ 4)(s+ 6)].
Note: y = c(t)
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Time Domain Analysis
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Introduction

• In time-domain analysis the response of a
dynamic system to an input is expressed as a
function of time.

• It is possible to compute the time response of a
system if the nature of input and the
mathematical model of the system are known.

• Usually, the input signals to control systems are
not known fully ahead of time.

• It is therefore difficult to express the actual input
signals mathematically by simple equations.
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Standard Test Signals
• The characteristics of actual input signals are a

sudden shock, a sudden change, a constant
velocity, and constant acceleration.

• The dynamic behavior of a system is therefore
judged and compared under application of
standard test signals – an impulse, a step, a
constant velocity, and constant acceleration.

• The other standard signal of great importance
is a sinusoidal signal.
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Standard Test Signals

• Impulse signal

– The impulse signal imitate the
sudden shock characteristic of
actual input signal.

– If A=1, the impulse signal is
called unit impulse signal.
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Standard Test Signals

• Step signal

– The step signal imitate
the sudden change
characteristic of actual
input signal.

– If A=1, the step signal is
called unit step signal
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Standard Test Signals

• Ramp signal
– The ramp signal imitate

the constant velocity
characteristic of actual
input signal.

– If A=1, the ramp signal
is called unit ramp
signal
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Standard Test Signals

• Parabolic signal

– The parabolic signal
imitate the constant
acceleration characteristic
of actual input signal.

– If A=1, the parabolic
signal is called unit
parabolic signal.
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Relation between standard Test Signals

• Impulse

• Step

• Ramp

• Parabolic
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Laplace Transform of Test Signals

• Impulse

• Step
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Laplace Transform of Test Signals

• Ramp

• Parabolic
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Time Response of Control Systems

System

• The time response of any system has two components

• Transient response

• Steady-state response.

• Time response of a dynamic system response to an input
expressed as a function of time.
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Time Response of Control Systems

• When the response of the system is changed from equilibrium it
takes some time to settle down.

• This is called transient response.
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• The response of the
system after the transient
response is called steady
state response.
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Time Response of Control Systems

• Transient response depend upon the system poles only and not
on the type of input.

• It is therefore sufficient to analyze the transient response using a
step input.

• The steady-state response depends on system dynamics and the
input quantity.

• It is then examined using different test signals by final value
theorem.
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Introduction
• The first order system has only one pole.

• Where K is the D.C gain and T is the time constant
of the system.

• Time constant is a measure of how quickly a 1st

order system responds to a unit step input.

• D.C Gain of the system is ratio between the input
signal and the steady state value of output.
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Introduction
• The first order system given below.

𝐺(𝑠) =
10

5𝑠 + 1

𝐺(𝑠) =
6

𝑠 + 2
=

6/2

1/2𝑠 + 1

• D.C gain is 10 and time constant is 5 seconds.

• For the following system

• D.C Gain of the system is 6/2 and time constant is 1/2
seconds.
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Impulse Response of 1st Order System

• Consider the following 1st order system
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Impulse Response of 1st Order System

• Re-arrange following equation as
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• In order to compute the response of the system in time domain
we need to compute inverse Laplace transform of the above
equation.
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Impulse Response of 1st Order System

Tte
T

K
tc /)( −=• If K=3 and T=2s then
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Step Response of 1st Order System

• Consider the following 1st order system
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• In order to find out the inverse Laplace of the above equation, we
need to break it into partial fraction expansion.
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Step Response of 1st Order System

• Taking  Inverse Laplace of above equation










+
−=

1

1

Ts

T

s
KsC )(

( )TtetuKtc /)()( −−=

• Where u(t)=1
( )TteKtc /)( −−= 1

( ) KeKtc 63201 1 .)( =−= −

• When t=T (time constant)
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Step Response of 1st Order System
• If K=10 and T=1.5s then ( )TteKtc /)( −−= 1
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Step Response of 1st order System

• System takes five time constants to reach its
final value.
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Step Response of 1st Order System
• If K=10 and T=1, 3, 5, 7 ( )TteKtc /)( −−= 1
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Step Response of 1st Order System
• If K=1, 3, 5, 10 and T=1 ( )TteKtc /)( −−= 1
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Relation Between Step and impulse 
response

• The step response of the first order system is

• Differentiating c(t) with respect to t yields
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Analysis of Simple RC Circuit
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Analysis of Simple RC Circuit

Step-input response:

match initial state:

output response for step-input:

v0

v0u(t)

v0(1-e-t/RC)u(t)
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Example 1
• Impulse response of a 1st order system is given below.

• Find out

– Time constant T

– D.C Gain K

– Transfer Function

– Step Response

tetc 503 .)( −=
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Example 1
• The Laplace Transform of Impulse response of a

system is actually the transfer function of the system.

• Therefore taking Laplace Transform of the impulse
response given by following equation.
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Example 1
• Impulse response of a 1st order system is given below.

• Find out

– Time constant T=2

– D.C Gain K=6

– Transfer Function

– Step Response
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Example 1
• For step response integrate impulse response

tetc 503 .)( −=

dtedttc t
=

− 503 .)(

Cetc t
s +−= − 506 .)(

• We can find out C if initial condition is known e.g. cs(0)=0

Ce +−= − 05060 .

6=C

t
s etc 5066 .)( −−=
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Example 1
• If initial conditions are not known then partial fraction

expansion is a better choice
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Ramp Response of 1st Order System
• Consider the following 1st order system
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• The ramp response is given as
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Parabolic Response of 1st Order System
• Consider the following 1st order system
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Practical Determination of Transfer 
Function of 1st Order Systems 

• Often it is not possible or practical to obtain a system's
transfer function analytically.

• Perhaps the system is closed, and the component parts are
not easily identifiable.

• The system's step response can lead to a representation even
though the inner construction is not known.

• With a step input, we can measure the time constant and the
steady-state value, from which the transfer function can be
calculated.
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Practical Determination of Transfer 
Function of 1st Order Systems 

• If we can identify T and K empirically we can obtain the
transfer function of the system.

1+
=

Ts

K

sR

sC

)(

)(



Associate Prof. Dr . Mohamed Ahmed Ebrahim

Practical Determination of Transfer Function 
of 1st Order Systems 

• For example, assume the unit
step response given in figure.

• From the response, we can
measure the time constant, that
is, the time for the amplitude to
reach 63% of its final value.

• Since the final value is about
0.72 the time constant is
evaluated where the curve
reaches 0.63 x 0.72 = 0.45, or
about 0.13 second.

T=0.13s

K=0.72

• K is simply steady state value.

• Thus transfer function is
obtained as:
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First Order System with a Zero

• Zero of the system lie at -1/α and pole at -1/T.
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• Step response of the system would be:
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First Order System With Delays

• Following transfer function is the generic
representation of 1st order system with time
lag.

• Where td is the delay time.
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First Order System With Delays
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First Order System With Delays
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